Example 1 (1-sample T-Test): The data file 'Score with 1-Sample T-Test Calculations.xlsx. has final scores for the STATS 101 class at a university. Test if the true mean μ for STATS 101 class equals 90.

This problem is formulated as testing H_0 : $\mu = 90$ vs. H_1 : $\mu \neq 90$.

Start with SCORE data in cells A2:A61. Microsoft Excel does not provide a 1-sample t-test /confidence interval function, so you need to compute these in Excel. The Score data file has all of these calculations.

Running the 1-sample t-test

Calculate the mean (Figure 1a), sd (Figure 1b), the t-statistic (Figure 1c) in Excel from the following formula:

$$t_{OBS} = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} = \frac{\overline{x} - 90}{s / \sqrt{n}}$$

and then using the Excel function tdist to compute the P-value using the formula P-value = $2 \times P(t_{n-1} > | t_{OBS} |)$ as shown in Figure 1d.

Note that '=tdist(|t_{OBS}|,n-1,2) gives the P-value for 2-sided alternative (Figure 1d), and

C3 🗸			(f _x	=AVERAGE(A2:A0		
	Α	В	С	D	E	
1	Score	n	60			
2	76	mu0	90			
3	85	xbar	74.88333333			
4	78	sd	10.61673075			
5	70	t_obs	-11.02911991			
6	78	P-Value	5.76993E-16			
7	75					
8	73					
0	70					

'=tdist(|t_{OBS}|,n-1,1) gives the P-value for 1-sided alternative.

1	Score	n	60	
2	76	mu0	90	
3	85	xbar	74.88333333	
4	78	sd	10.61673075	
5	70	t_obs	-11.02911991	
6	78	P-Value	5.76993E-16	
7	75			

=STDEV(A2:A61)

Е

Figure 1a: Computing xbar in Excel

Figure 1c: Computing t_{OBS} in Excel

Figure 1a: Computing sd in Excel

В

	Α	В	С	TDIST(x , deg_freedom, tai
1	Score	n	60	
2	76	mu0	90	
3	85	xbar	74.88333333	
4	78	sd	10.61673075	
5	70	t obs	-11.02911991	
6	78	P-Value	=TDIST(ABS(d	
7	76	1		

Figure 1d: Computing P-value in Excel

STATS24x7.com[©] 2010 ADI-NV, INC.

Computing the confidence interval for mean *µ*

The 95% confidence interval for the mean μ of an approximately normal population from a sample of size n is given by:

 $L = \overline{x} - t_{n-1,.025} \frac{s}{\sqrt{n}}$ $U = \overline{x} + t_{n-1,.025} \frac{s}{\sqrt{n}}$ $\overline{x} = \text{sample mean or average, } s = \text{sample standard deviation}$ $t_{n-1,.025} = \text{Upper 2.5\% point from t-table with df n-1}$

The SCORE data is in cells A2:A61, and the sample size n was entered in Cell C1. We have also calculated the sample average (in Cell C3) and sample sd (in Cell C4). The lower endpoint of 95% confidence interval is calculated in Cell G4 (see Figure 1e) by typing the formula

=D6-TINV(0.05,\$D\$4-1)

=D6-TINV(0.05,\$D\$4-1)										
D		E	F	G	Н					
est			95% Confi	dence Inter	al for Mear	ìμ				
	60		L	72.88234						

Figure 1e: Calculating lower limit L

The upper limit U is similarly calculated by typing the formula

=D6+TINV(0.05,\$D\$4-1) in Cell G5.

Example 2 (2 Independent Samples T-Test): Measured weights 0f 20 '3 lbs hamburger meat' packets from Grocery store A and 15 from Grocery Store B are given in the data file 'Weights with 2 Independent Sample T-Test Calculations.xlsx'. Test to see if the true means of '3 lbs hamburger meat' packets from Grocery store A and Grocery Store B are equal.

The null hypothesis H_0 : $\mu_1 = \mu_2$ is to be tested vs. the alternative H_1 : $\mu_1 \neq \mu_2$.

Running the 2-sample t-test using the Excel function TTEST

Start with Grocery Store A data in cells A2:A21 and Grocery Store B data in cells B2:A16.

Go to Cell E2, and click on Formulas/More Functions/Statistical/TTEST, select range A2:A21 as Array1, and B2:B16 as Array2, Tails = 2 (for 2-sided alternative), and Type = 2 for running the t-test for Equal Variances Case, and click OK (see Figure 2a), which will return P-value of 0.063191.

	9	Home	Insert	Page La	yout For	mulas	Data	Review	View			
F	fx x											
	TTEST • • • × • f =TTEST(A2:A21,B2:B16,2,2)+TTEST(A2:A21,B2:B15,2,2)											
	4 A		В	С		D		E	F	G	Н	1
1	. 4	۱	В					P-Value				
2	. 3		2.65		Equal Varia	ances A	ssumed	315,2,2)				
3	2.9	95	2.83		Unequal V	ariance	s					
4	3		3.1		Function A	rgument	s				8	x
5	2.9	94	2.81			-						
6	i 3		3.67		TTEST-							
7	3.0	02	2.93		Array1	A2:A21			E = {3;	2.95;3;2.94;	;3;3.02;2.95;	2.95;
8	2.9	95	2.92		Array2	B2:B15			E = {2	.65;2.83;3.1;	;2.81;3.67;2.	93;2.92;
9	2.9	95	3.15		Tails	2			E = 2			
1	0 2.9	95	3.04		Туре	2			5 = 2			
1	1 3.0)5	2.87							57204226		
1	2 3.0)5	3.3		Returns the	e probabili	ity associate	d with a Stud	ent's t-Test.	37234330		
1	3 2.9	96	3.45					Type is t	he kind of t-te	st: paired =	1. two-sample	equal
1	4 2.9	94	3.53					va	riance (homos	cedastic) = 2	, two-sample	unequal
	5 2.9	95	3.51	_				va	riance = 3.			
1	6 3.0)7	3.01	_	Eormula rec	ult – 0	120495116					
	/ 3.0	3		_	i i ornuare:	surt = 0.	120403110					
	8 2.9	94		_	Help on this	function				OK		Cancel
	9 2.9	93 De					_		_		_	
2	1 2.5	10										
2	1 3.0			•	1 5	T	0 F	1 7 7	•			

Figure 2a: Running 2-sample T-Test for Equal Variance case

STATS24x7.com[©] 2010 ADI-NV, INC.

The T-Test for Unequal Variances Case is run the same way, the only difference is that Type = 3 in this case. The P-values for the 2-sample T-Test run both ways are shown below:

	P-Value
Equal Variances Assumed	0.063191
Unequal Variances	0.116863

Since the P-values in both cases > .05, the null hypothesis of equal means is not rejected for data of Example 2.

Note that Excel only outputs the P-values; to get estimates and intermediate results, use the method shown below.

Computing the confidence interval for difference in two means μ_1 - μ_2

Excel does not provide a function for calculating the confidence interval for difference in two means, so we have to calculate it using the following formulas:

EQUAL VARIANCES - Use Pooled sample Variance	UNEQUAL VARIANCES - Satterthwaites's Approximate Formula
$\hat{\mu}_1 - \hat{\mu}_2 = \overline{x}_1 - \overline{x}_2$	$\hat{\mu}_1 - \hat{\mu}_2 = \overline{x}_1 - \overline{x}_2$
$sd(\overline{x}_1 - \overline{x}_2) = s_{pooled} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$sd(\overline{x}_{1} - \overline{x}_{2}) = \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}$
where $s_{pooled} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 + n_2 - 2)}}$	$df = \frac{\left[\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right]^2}{(2 + 1)^2 (2 + 1)^2}$
95% Confidence Interval for $\mu_1 - \mu_2$:	$\frac{\left(s_{1}^{2}/n_{1}\right)}{m-1} + \frac{\left(s_{2}^{2}/n_{2}\right)}{m-1}$
$\overline{x}_1 - \overline{x}_2 \pm t_{df,05} \times s_{pooled} + \frac{1}{1} + \frac{1}{1}$, where $df = n_1 + n_2 - 2$	$n_1 - 1$ $n_2 - 1$
$\sqrt{n_1 n_2}$	Satterthwaite's Approximate Confidence Interval:
	$\overline{x}_1 - \overline{x}_2 \pm t_{df,.05} \times \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
	$t_{df,05}$ =2-sided T-table value corresponding to probability .05

All of the formulas for running the 2-Sample T-Test (Equal Variance Case and Unequal Variance Case) and computing 95% Confidence Intervals are shown in Figure 2b and the results in Figure 2c.

6		÷	Weights with	2 Independent Same	le T-Test Calculations - M	licrosoft Excel		
		Development - Fo	and a Data Data Mission					
	Home Insert	Page Layout Fo	ormulas Data Review View					
	🖰 🔏 Cut	Calibri 🔹 11	· A A = = >>-	Wrap Text	General 🔹			🐜 🐩 🛄
	Copy			The second second second	Ø = 0/ a €.0 .00	Conditional	Format Cell	Insert Delete Format
1	👻 🛷 Format Painter	B I D .		a Merge & Center *	\$ % ? .00 ≯.0	Formatting *	as Table * Styles *	
	Clipboard 🕞	Font	Alignment	E.	Number 🕞	9	Styles	Cells
	D4 •							
	A	В	С		D		E	F
1	А	В			Ν		MEAN	S
2	3	2.65	A	20			=AVERAGE(A2:A	21) =STDEV(A2:A21)
3	2.95	2.83	В	15			=AVERAGE(B2:B1	L6) =STDEV(B2:B16)
4	3	3.1						
5	2.94	2.81						
6	3	3.67	ASSUMING EQUAL VARIANCES					
7	3.02	2.93	xbar1-xbar2	=E2-E3				
8	2.95	2.92	S2+pooled	=((D2-1)	*F2^2+(D3-1)*F3^2)/(D	2+D3-2)		
9	2.95	3.15	S_pooled	=SQRT(D	8)			
10	2.95	3.04	s_pooled X sqrt(1/n1 + 1/n2)	=D9*SQF	RT((1/D2)+(1/D3))			
11	3.05	2.87	df	=D2+D3-	2			
12	3.05	3.3	t(df,.05)	=TINV(0	05,D11)			
13	2.96	3.45	L	=D7-D12	*D10			
14	2.94	3.53	U	=D7+D12	*D10			
15	2.95	3.51	t_obs	=D7/D10				
16	3.07	3.01	P-value	=TDIST(A	BS(D15),D11,2)			
17	3.03		REJECT H0					
18	2.94							
19	2.93							
20	2.96		UNEQUAL VARIANCES					
21	3.05		xbar1-xbar2	=E2-E3				
22			sd(xbar1-xbar2)	=SQRT(F	2^2/D2 +F3^2/D3)			
23			num_df	=(F2^2/D)2 + F3^2/D3)^2			
24			denom_df	=(F2^2/D	2)^2/(D2-1) + (F3^2/D3)^2/(D3-1)		
25			df	=D23/D2	4			
26			t(df,.05)	=TINV(0	05,D25)			
27			L	=D21-D2	6*D22			
28			U	=D21+D2	6*D22			
29			t_obs	=D21/D2	2			
30			Ρ	=TDIST(#	BS(D29),D25,2)			

T Tests and Confidence Intervals in Excel

Figure 2b: Excel formulas for running t-test and calculating L and U of 95% confidence interval for μ_1 - μ_2

T Tests and Confidence Intervals in Excel

<u> </u>	Home	Insert	Page Layout Form	nulas Data Review	w View
ľ	Cut	у	Calibri - 11	• A • • = = =	🗞 🖓 Wrap Tex
Pa	ste 🍼 For	mat Painter	B <i>I</i> <u>U</u> - <u>-</u> <u>-</u> <u>-</u> <u>-</u>		📲 📲 📑 Merge &
	Clipboar	d 🖻	Font	Ta .	Alignment
	D4	-	(fx		
	А	В	С	D	E F
1	A	B		N	MEAN S
2	3	2.65	Α	20	2.9845 0.046052
3	2.95	2.83	В	15	3.118 0.30746
4	3	3.1			
5	2.94	2.81			
6	3	3.67	ASSUMING EQUAL VA	ARIANCES	
7	3.02	2.93	xbar1-xbar2	-0.1335	
8	2.95	2.92	S2+pooled	0.041325303	
9	2.95	3.15	S_pooled	0.203286259	
10	2.95	3.04	s_pooled X sqrt(1/n1	0.069435476	
11	3.05	2.87	df	33	
12	3.05	3.3	t(df,.05)	2.034515287	
13	2.96	3.45	L	-0.274767538	
14	2.94	3.53	U	0.007767538	
15	2.95	3.51	t_obs	-1.922648296	
16	3.07	3.01	P-value	0.06319078	
17	3.03		REJECT H0		
18	2.94				
19	2.93				
20	2.96		UNEQUAL VARIANCES	5	
21	3.05		xbar1-xbar2	-0.1335	
22			sd(xbar1-xbar2)	0.080050826	
23			num_df	4.10642E-05	
24			denom_df	2.83748E-06	
25			df	14.47207444	
26			t(df,.05)	2.144786681	
27			L	-0.305191945	
28			U	0.038191945	
29			t_obs	-1.667690479	
30			P	0.117580684	

Figure 2c: Results of T-Test and 95% confidence interval for μ_1 - μ_2

STATS24x7.com[©] 2010 ADI-NV, INC.

Example 3 (Paired T-Test): The data file Burger_Sales.xlsx shows daily sales of two adjacent fast food places for 14 randomly selected days. Test to see if the average sales of the two fast food restaurants are equal.

The data in this example is PAIRED since the *sales for the two restaurants are for same day, and we will need to run the paired T Test for this example.* Start with data in cells A2:A15 (McB sales) and B2:B15 (DK sales), and click on Formulas/More Functions/Statistical/TTEST. Select input ranges, Tails = 2, Type = 1 (for Paired T-Test), click on OK (Figure 3), to get P-value of 0.033599. Since the P-value for Example 3 data is < .05, we conclude that the average sales at the two stores are not equal.

_	Home	Insert	Page La	yout Fo	rmulas	Data	Review	View			
	fr	5 🕅		6					L.	🚈 Define N	lame 🔻
4		L	3							<i>f</i> x [™] Use in F	ormula 🔻
II Fu	nsert Auto nction	Sum Recent ▼ Used	tly Financial	Logical Te	xt Date Time	& Looku • Referer	p& Math hce * & Trig *	More Functions *	Name Manager	Create fr	om Selectio
				Function Lib	brary					Defined Nar	nes
	TTEST • • • * • f =TTEST(A2:A15,B2:B15,2,1)+ TTEST(A2:A15,B2:B15,2,1)										
	Α	В	С		D		E	F	G	Н	1
1	McB	DK									
2	1004.3	902.8		P-Value fo	or paired	T-Test	315,2,1)]			
3	947.05	739.65								9	~
4	993.83	975.63		Function A	rguments						^
5	345.4	382.18		TTEST							
6	796.76	629.02		Array1	A2:A15			5 = {1	.004.27;947.0	05;993.83;34	5.4;7
7	823.44	590.77		Array2	B2:B15			(9	02.8;739.65;	975.63;382.1	18;629.0
8	755.21	574.36		Tails	2			I = 2			
9	935.82	668.39		Туре	1			E = 1			
10	1114.3	773.89		1. Abr	1			<u>- 1</u>			
11	1021.6	1121.8		Returns th	o probabili	hy according	od with a Stur	= 0.	03359945		
12	996.96	1033.6		Returns un	e probabilit	ly associat		ients triest.			
13	969.58	1127.7					va va	the kind of t-ti riance (homos	est: paired = :cedastic) = 2	1, two-sample , two-sample	equal unequal
14	1007.8	974.63					va	riance = 3.			
15	1090.1	1001.3									
16				Formula re	sult = 0.0	67198899					
17				Help on thi	s function				OK		Cancel
18											

Figure 3: Running Paired T-Test for Example 3